Specification of Thermoelectric Module

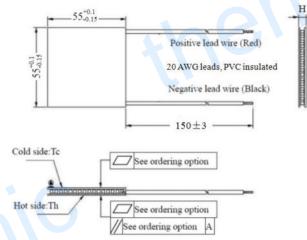
TEC1-24105

Description

The 241 couples, 55mm x 55mm size module is a single stage module which is made of our high performance ingot to achieve superior cooling performance and 70°C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
U _{max} (Voltage)	30.3	33.1	Voltage applied to the module at DT _{max}
I _{max} (Amps)	5.8	5.8	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	109.6	118.1	Cooling capacity at cold side of the module under DT=0 °C
AC resistance (Ohms)	4.05	4.36	The module resistance is tested under AC
Tolerance (%)	± 10		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

B. Sealant:

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C)

2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

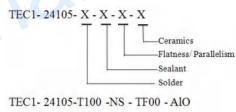
C. Ceramics:

D. Ceramics Surface Options:

1. Alumina (Al₂O₃, white 96%)

1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN)


2. Metalized

Ordering Option

Suffi	Thickness	Flatness/	Lead wire length(mm)
X	H (mm)	Parallelism (mm)	Standard/Optional length
TF	0:4.2± 0.1	0: 0.1/0.1	150±3/Specify
TF	$1:4.2 \pm 0.05$	1: 0.05/0.05	150±3/Specify

Eg. TF01: Thickness 4.2 ± 0.1 (mm) and Flatness 0.05/0.05 (mm)

Naming for the Module

T100: Solder, BiSn (Melting Point=138 °C)

NS: No sealing AlO: Alumina white 96%

TF00: Thickness ±0.10(mm) and Flatness/Parallelism 0.05/0.05(mm)

20

0

10

Specification of Thermoelectric Module

TEC1-24105

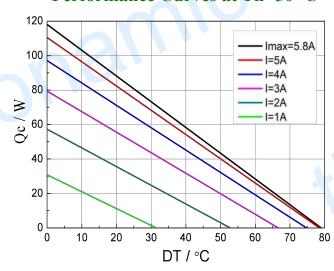
120 100 80 80 80 80 1=5A 1=3A 1=2A 1=1A

30

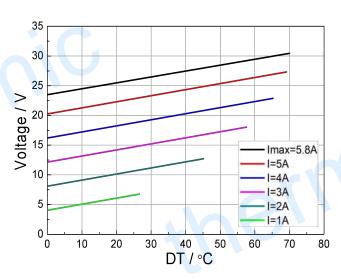
20

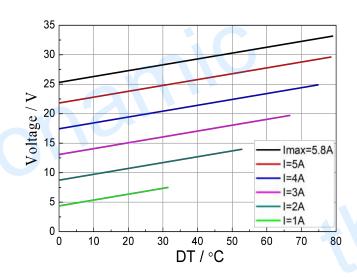
40

DT / °C

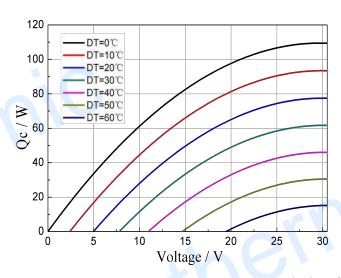

50

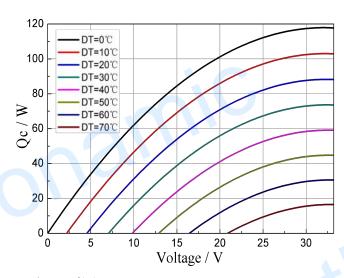
60


70

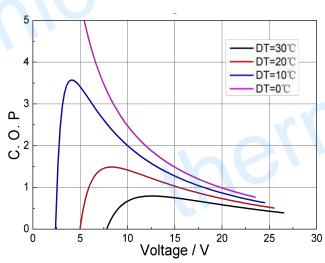

80

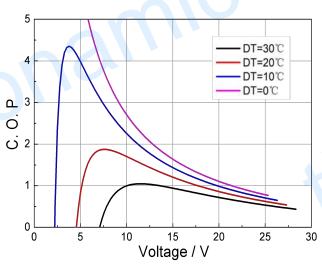
Performance Curves at Th=50 °C



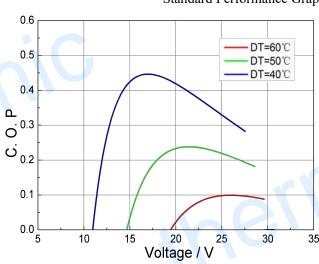

Standard Performance Graph Qc= f(DT)

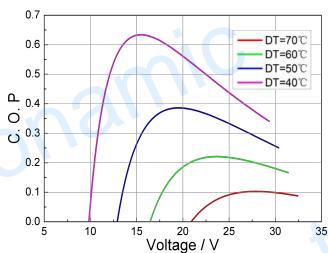
Standard Performance Graph V= f(DT)


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEC1-24105




Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Caution

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating.
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.